State Space Realization of Model Predictive Controllers Without Active Constraints
نویسندگان
چکیده
To enable the use of traditional tools for analysis of multivariable controllers such as model predictive control (MPC), we develop a state space formulation for the resulting controller for MPC without constraints or assuming that the constraints are not active. Such a derivation was not found in the literature. The formulation includes a state estimator. The MPC algorithm used is a receding horizon controller with infinite horizon based on a state space process model. When no constraints are active, we obtain a state feedback controller, which is modified to achieve either output tracking, or a combination of input and output tracking. When the states are not available, they need to be estimated from the measurements. It is often recommended to achieve integral action in a MPC by estimating input disturbances and include their effect in the model. We show that to obtain offset free steady state the number of estimated disturbances must equal the number of measurements. The estimator is included in the controller equation, and we obtain a formulation of the overall controller with the set-points and measurements as inputs, and the manipulated variables as outputs. One application of the state space formulation is in combination with the process model to obtain a closed loop model. This can for example be used to check the steady-state solution and see whether integral action is obtained or not.
منابع مشابه
Performance Comparison of Predictive Controllers in Optimal and Stable Operation of Wastewater Treatment Plants
Any proper operation could be translated as a constrained optimization problem inside a WWTP, whose nonlinear behavior renders its control problems quite attractive for performance of multivariable optimization–based control technique algorithms, such as NMPC. The main advantage of this control technique lies in its ability to handle model nonlinearity as well as various types of constraints on...
متن کاملPerformance Comparison of Predictive Controllers in Optimal and Stable Operation of Wastewater Treatment Plants
Any proper operation could be translated as a constrained optimization problem inside a WWTP, whose nonlinear behavior renders its control problems quite attractive for performance of multivariable optimization–based control technique algorithms, such as NMPC. The main advantage of this control technique lies in its ability to handle model nonlinearity as well as various types of constraints on...
متن کاملComputationally Aware Control of Cyber-physical Systems: a Hybrid Model Predictive Control Approach
Cyber-Physical Systems (CPS) are systems of collaborating computational elements controlling physical entities via communication. Such systems involve control processes of physical entities and computational processes. The control complexities originated from the physical dynamics and systematic constraints are difficult for traditional control approaches (e.g., PID control) to handle without a...
متن کاملImplementation of Low-Cost Architecture for Control an Active Front End Rectifier
In AC-DC power conversion, active front end rectifiers offer several advantages over diode rectifiers such as bidirectional power flow capability, sinusoidal input currents and controllable power factor. A digital finite control set model predictive controller based on fixed-point computations of an active front end rectifier with unity displacement of input voltage and current to improve dynam...
متن کاملDynamics and Motion Control of Wheeled Robotic Systems
Mobile robotic systems, which include a mobile platform with one or more manipulators, mounted at specific locations on the mobile base, are of great interest in a number of applications. In this paper, after thorough kinematic studies on the platform and manipulator motions, a systematic methodology will be presented to obtain the dynamic equations for such systems without violating the base n...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2004